论文标题

NTIRE 2020挑战图像示例:方法和结果

NTIRE 2020 Challenge on Image Demoireing: Methods and Results

论文作者

Yuan, Shanxin, Timofte, Radu, Leonardis, Ales, Slabaugh, Gregory, Luo, Xiaotong, Zhang, Jiangtao, Qu, Yanyun, Hong, Ming, Xie, Yuan, Li, Cuihua, Xu, Dejia, Chu, Yihao, Sun, Qingyan, Liu, Shuai, Zong, Ziyao, Nan, Nan, Li, Chenghua, Kim, Sangmin, Nam, Hyungjoon, Kim, Jisu, Jeong, Jechang, Cheon, Manri, Yoon, Sung-Jun, Kang, Byungyeon, Lee, Junwoo, Zheng, Bolun, Liu, Xiaohong, Dai, Linhui, Chen, Jun, Cheng, Xi, Fu, Zhenyong, Yang, Jian, Lee, Chul, Vien, An Gia, Park, Hyunkook, Nathan, Sabari, Beham, M. Parisa, Roomi, S Mohamed Mansoor, Lemarchand, Florian, Pelcat, Maxime, Nogues, Erwan, Puthussery, Densen, S, Hrishikesh P, C V, Jiji, Sinha, Ashish, Zhao, Xuan

论文摘要

本文回顾了与CVPR 2020结合的图像恢复和增强(NTIRE)研讨会的新趋势(NTIRE)研讨会的新趋势的挑战。Demoireing是从图像中删除Moire模式以揭示潜在的干净图像的艰巨任务。挑战分为两条曲目。轨道1针对单个图像示例问题,该问题旨在从单个图像中删除Moire模式。轨道2着重于爆发示例问题,其中提供了一组同一场景的降级摩尔图像作为输入,目的是产生单个演示图像作为输出。这些方法是根据其忠诚度进行排名的,该方法是使用地面真相清洁图像与参与者方法产生的恢复图像之间的峰值信噪比(PSNR)测量的。这些曲目分别有142名和99名注册参与者,在最终测试阶段共有14和6个提交的参与者。条目涵盖了图像和爆发图像示例性问题中的最新目前。

This paper reviews the Challenge on Image Demoireing that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2020. Demoireing is a difficult task of removing moire patterns from an image to reveal an underlying clean image. The challenge was divided into two tracks. Track 1 targeted the single image demoireing problem, which seeks to remove moire patterns from a single image. Track 2 focused on the burst demoireing problem, where a set of degraded moire images of the same scene were provided as input, with the goal of producing a single demoired image as output. The methods were ranked in terms of their fidelity, measured using the peak signal-to-noise ratio (PSNR) between the ground truth clean images and the restored images produced by the participants' methods. The tracks had 142 and 99 registered participants, respectively, with a total of 14 and 6 submissions in the final testing stage. The entries span the current state-of-the-art in image and burst image demoireing problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源