论文标题
缩放的McKean-Vlasov过程的功能凸顺序
Functional convex order for the scaled McKean-Vlasov processes
论文作者
论文摘要
我们为两个缩放的McKean-Vlasov处理$ x =(x_ {t})_ {t \ in [0,t]} $和$ y =(y_ _ {t})_ {t \ in [0,t]} $定义了在[0,t]} $(the [0,T] (\ Mathcal {f} _ {t})_ {t \ geq0},\ Mathbb {p})$ by \ [\ [\ begin {cases} dx_ {t} = b(t,x__ {t,x_ {t,x_ {t},μ__{t} t}) μ_{t})db_ {t},\; \; x_ {0} \ in L^{p}(\ Mathbb {p}),\\ dy_ {t} \,= b(t,= b(t,\,\ \,y__ _ _ { \,y_ {t} \ ,, \,ν_{t})db_ {t},\; \; y_ {0} \ in l^{p}(\ Mathbb {p}) 其中$ p \ geq2 $,对于[0,t] $,$μ_t$,$ν_t$的每个$ t \表示分别为$ x_t $,$ y_t $的概率分布,而漂移系数$ b(t,x,x,μ)in In $ x $(缩放)。如果我们对$σ$进行凸度和单调假设(仅),如果相对于部分矩阵订单,则在$σ$上进行凸面和单调假设,则可以在整个过程中传播到process $ x $ y $ x $ y $ $ y $ $ y_0 $的初始随机变量$ x_0 \ preceq _ {\ preceq _ {\,cv} y_0 $。也就是说,如果我们考虑在路径空间上定义的凸功能$ f $,则具有多项式增长,我们具有$ \ m athbb {e} f(x)\ leq \ leq \ mathbb {e} f(y)$;对于涉及路径空间及其边际分配空间的产品空间上定义的凸功能$ g $,我们有$ \ mathbb {e} \,g \ big(x,(μ_t)_ {t \ in [0,t]} \ big) t]} \ big)$在适当的条件下。对称设置也是有效的,也就是说,如果$θ\ preceqσ$和$ y_0 \ leq x_0 $相对于convex顺序,则$ \ mathbb {e} \,f(y)\ leq \ leq \ leq \ leq \ mathbb {e} (ν_t)_ {t \ in [0,t]} \ big)\ leq \ mathbb {e} \,g(x,(μ_t)_ {t \ in [0,t]})$。该证明基于几个前向和向后的动态编程原理以及McKean-Vlasov方程的Euler方案的收敛性。
We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{t\in[0, T]}$ and $Y=(Y_{t})_{t\in[0, T]}$ defined on a filtered probability space $(Ω, \mathcal{F}, (\mathcal{F}_{t})_{t\geq0}, \mathbb{P})$ by \[\begin{cases} dX_{t}= b(t, X_{t}, μ_{t})dt+σ(t, X_{t}, μ_{t})dB_{t}, \;\;X_{0}\in L^{p}(\mathbb{P}),\\ dY_{t}\,= b(t, \,Y_{t}\,,\, ν_{t})dt+θ(t, \,Y_{t}\,,\, ν_{t})dB_{t}, \;\;Y_{0}\in L^{p}(\mathbb{P}), \end{cases}\] where $p\geq2$, for every $ t\in[0, T]$, $μ_t$, $ν_t$ denote the probability distribution of $X_t$, $Y_t$ respectively and the drift coefficient $b(t, x, μ)$ is affine in $x$ (scaled). If we make the convexity and monotony assumption (only) on $σ$ and if $σ\preceqθ$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 \preceq_{\,cv} Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ defined on the path space with polynomial growth, we have $\mathbb{E}F(X)\leq\mathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $\mathbb{E}\,G\big(X, (μ_t)_{t\in[0, T]}\big)\leq \mathbb{E}\,G\big(Y, (ν_t)_{t\in[0, T]}\big)$ under appropriate conditions. The symmetric setting is also valid, that is, if $θ\preceq σ$ and $Y_0 \leq X_0$ with respect to the convex order, then $\mathbb{E}\,F(Y) \leq \mathbb{E}\,F(X)$ and $\mathbb{E}\,G\big(Y, (ν_t)_{t\in[0, T]}\big)\leq \mathbb{E}\,G(X, (μ_t)_{t\in[0, T]})$. The proof is based on several forward and backward dynamic programming principles and the convergence of the Euler scheme of the McKean-Vlasov equation.