论文标题
涡流和分布量
Vortices and Fractons
论文作者
论文摘要
我们讨论了一种简单且实验可用的分形式物理学实现。我们注意到,超流体涡流构成了哈密顿式系统,可保存总偶极矩和四极矩涡流的痕迹。从而在两个空间维度上建立了与无可观标量电荷理论的关系。接下来,我们考虑涡度数量较大的极限,并表明新兴的涡流流体动力学也可以保留这些时刻。最后,我们在弯曲表面上显示了涡流和分布岩的运动,从而为面部物理和弯曲空间之间的相互作用开辟了实验性研究的途径。我们的结论还适用于强磁场中的带电颗粒。
We discuss a simple and experimentally available realization of fracton physics. We note that superfluid vortices form a Hamiltonian system that conserves total dipole moment and trace of the quadrupole moment of vorticity; thereby establishing a relation to a traceless scalar charge theory in two spatial dimensions. Next we consider the limit where the number of vortices is large and show that emergent vortex hydrodynamics also conserves these moments. Finally, we show the motion of vortices and of fractons on curved surfaces agree, thereby opening a route to experimental study of the interplay between fracton physics and curved space. Our conclusions also apply to charged particles in strong magnetic field.