论文标题
奇数单一$ k_2 $ functor的中心性
Centrality of odd unitary $K_2$-functor
论文作者
论文摘要
令$(r,δ)$为奇数代数。我们表明,在两个主要情况下,统一的Steinberg $ \ MATHRM {stu}(r,δ)$是一个交叉的模块,而奇数统一组$ \ mathrm u(r,δ)$在两个主要情况下:如果奇数形式的代数具有免费的正交性高度家庭的稳定等级状态和quas is off is off ange and quasi and quasi and quasi and quasi and quasi,则是一个免费的正交多体性家庭。该证明仅根据亲组使用基本定位技术。
Let $(R, Δ)$ be an odd form algebra. We show that the unitary Steinberg group $\mathrm{StU}(R, Δ)$ is a crossed module over the odd unitary group $\mathrm U(R, Δ)$ in two major cases: if the odd form algebra has a free orthogonal hyperbolic family satisfying a local stable rank condition and if the odd form algebra is sufficiently isotropic and quasi-finite. The proof uses only elementary localization techniques in terms of pro-groups.