论文标题

基于转移学习的新型GDP预测技术,使用CO2发射数据集

A Novel GDP Prediction Technique based on Transfer Learning using CO2 Emission Dataset

论文作者

Kumar, Sandeep, Muhuri, Pranab K.

论文摘要

在过去的150年中,大气中的二氧化碳浓度从百万分之280份增加到百万分之400。由于温室效应,这导致全球平均温度的增加近0.7度。但是,最繁荣的国家是温室气体的最高发射器(特别是CO2)。这表明气态排放与国家的国内生产总值(GDP)之间存在牢固的关系。这种关系由于对技术进步的依赖以及不断变化的国内和国际监管政策和关系而不断变化,因此这种关系是高度易变和非线性的。为了分析如此广泛的非线性关系,软计算技术非常有效,因为它们可以预测一个可用于多变量参数的紧凑型解决方案,而无需对内部系统功能有任何明确的见解。本文报告了一种基于GDP预测的新型基于转移学习的方法,我们称其为GDP预测的域调整转移学习。在提出的方法中,通过对任何发达或发展经济的数据进行培训的模型,可以使用其CO2排放来预测不同国家的人均GDP。考虑到三种众所周知的回归方法,例如广义回归神经网络,极端学习机和支持向量回归,结果是相对呈现的。然后,提出的方法用于可靠地估算一些饱受战争war和孤立的国家的人均GDP缺失。

In the last 150 years, CO2 concentration in the atmosphere has increased from 280 parts per million to 400 parts per million. This has caused an increase in the average global temperatures by nearly 0.7 degree centigrade due to the greenhouse effect. However, the most prosperous states are the highest emitters of greenhouse gases (specially, CO2). This indicates a strong relationship between gaseous emissions and the gross domestic product (GDP) of the states. Such a relationship is highly volatile and nonlinear due to its dependence on the technological advancements and constantly changing domestic and international regulatory policies and relations. To analyse such vastly nonlinear relationships, soft computing techniques has been quite effective as they can predict a compact solution for multi-variable parameters without any explicit insight into the internal system functionalities. This paper reports a novel transfer learning based approach for GDP prediction, which we have termed as Domain Adapted Transfer Learning for GDP Prediction. In the proposed approach per capita GDP of different nations is predicted using their CO2 emissions via a model trained on the data of any developed or developing economy. Results are comparatively presented considering three well-known regression methods such as Generalized Regression Neural Network, Extreme Learning Machine and Support Vector Regression. Then the proposed approach is used to reliably estimate the missing per capita GDP of some of the war-torn and isolated countries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源