论文标题
DeepClaw:用于学习对象操纵的机器人硬件基准测试平台
DeepClaw: A Robotic Hardware Benchmarking Platform for Learning Object Manipulation
论文作者
论文摘要
我们将DeepClaw作为机器人硬件和机器人学习任务层次结构的可重构基准。 DeepClaw Benchmark的目标是对机器人学习问题的机电量值,它具有机器人单元的最低设计,可以轻松地重新配置从各种供应商那里托管机器人硬件,包括操纵器,操纵器,抓取者,相机,删除和对象,旨在旨在精心策划的物理操作数据和评估技能,以获取精心掌握的技能。我们为机器人单元提供了详细的设计,并提供了随时可用的零件,以构建实验环境,该环境可以容纳通常用于机器人学习的各种机器人硬件。我们还提出了软件集成的层次结构管道,包括本地化,识别,掌握计划和运动计划,以简化基于学习的机器人控制,数据收集和实验验证,以验证共享性和可重复性。我们为基线TIC-TAC TOE任务,bin-cleling任务以及使用三组标准机器人硬件的拼图拼图任务提供了DeepClaw系统的基准测试结果。我们的结果表明,在DeepClaw中定义的任务很容易在三个机器人单元上复制。在相同的任务设置下,所使用的机器人硬件的差异将对机器人学习的性能指标产生不可忽略的影响。所有设计布局和代码均在GitHub上托管,以进行开放访问。
We present DeepClaw as a reconfigurable benchmark of robotic hardware and task hierarchy for robot learning. The DeepClaw benchmark aims at a mechatronics perspective of the robot learning problem, which features a minimum design of robot cell that can be easily reconfigured to host robot hardware from various vendors, including manipulators, grippers, cameras, desks, and objects, aiming at a streamlined collection of physical manipulation data and evaluation of the learned skills for hardware benchmarking. We provide a detailed design of the robot cell with readily available parts to build the experiment environment that can host a wide range of robotic hardware commonly adopted for robot learning. We also propose a hierarchical pipeline of software integration, including localization, recognition, grasp planning, and motion planning, to streamline learning-based robot control, data collection, and experiment validation towards shareability and reproducibility. We present benchmarking results of the DeepClaw system for a baseline Tic-Tac-Toe task, a bin-clearing task, and a jigsaw puzzle task using three sets of standard robotic hardware. Our results show that tasks defined in DeepClaw can be easily reproduced on three robot cells. Under the same task setup, the differences in robotic hardware used will present a non-negligible impact on the performance metrics of robot learning. All design layouts and codes are hosted on Github for open access.