论文标题

流体引导的大规模单层二维材料的CVD生长

Fluid Guided CVD Growth for Large-scale Monolayer Two-dimensional Materials

论文作者

Zhou, Dong, Lang, Ji, Yoob, Nicholas, Unocic, Raymond R., Wu, Qianhong, Li, Bo

论文摘要

大气压化学蒸气沉积(APCVD)已广泛用于合成二维(2D)材料,因为其成本较低和对高质量单层晶体合成的希望。但是,对影响APCVD过程的反应机制和关键参数的理解仍处于其胚胎阶段。因此,APCVD方法在实现大规模连续膜方面的可伸缩性仍然非常差。在这里,我们使用Mose2作为模型系统,并提出了一种流体引导的增长策略来理解和控制2D材料的生长。通过在全反应量表中的实验和计算流体动力学(CFD)分析的整合,我们确定了三个关键参数:前体混合,流体速度和剪切应力,在APCVD过程中起着至关重要的作用。通过修改生长设置的几何形状,以增强前体混合并降低附近的速度剪切速率和调节流动方向,我们已经成功获得了英寸尺度的单层Mose2。通过流体设计实现可扩展2D材料的前所未有的成功奠定了设计新的CVD系统以实现纳米材料的可扩展合成的基础。

Atmospheric pressure chemical vapor deposition (APCVD) has been used extensively for synthesizing two-dimensional (2D) materials, due to its low cost and promise for high-quality monolayer crystal synthesis. However, the understanding of the reaction mechanism and the key parameters affecting the APCVD processes is still in its embryonic stage. Hence, the scalability of the APCVD method in achieving large scale continuous film remains very poor. Here, we use MoSe2 as a model system and present a fluid guided growth strategy for understanding and controlling the growth of 2D materials. Through the integration of experiment and computational fluid dynamics (CFD) analysis in the full-reactor scale, we identified three key parameters: precursor mixing, fluid velocity and shear stress, which play a critical role in the APCVD process. By modifying the geometry of the growth setup, to enhance precursor mixing and decrease nearby velocity shear rate and adjusting flow direction, we have successfully obtained inch-scale monolayer MoSe2. This unprecedented success of achieving scalable 2D materials through fluidic design lays the foundation for designing new CVD systems to achieve the scalable synthesis of nanomaterials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源