论文标题

Hirzebruch-Zagier类和五重田的理性椭圆曲线

Hirzebruch-Zagier classes and rational elliptic curves over quintic fields

论文作者

Fornea, Michele, Jin, Zhaorong

论文摘要

有条件地,在希尔伯特模块化表面和一些较小的技术假设的典型的构想同时,我们在等级$ 0 $中建立了等效的BSD凸台的新实例,其应用于五五位化领域的理性椭圆曲线的算术。关键成分是扭曲的三级产品$ p $ ad-adic $ l $ - 功能的改进,构建兼容的Hirzebruch-Zagier Cycles集合以及将两者构建的明确互惠法。

Conditionally on a conjecture on the étale cohomology of Hilbert modular surfaces and some minor technical assumptions, we establish new instances of the equivariant BSD-conjecture in rank $0$ with applications to the arithmetic of rational elliptic curves over quintic fields. The key ingredients are a refinement of twisted triple product $p$-adic $L$-functions, the construction of a compatible collection of Hirzebruch-Zagier cycles and an explicit reciprocity law relating the two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源