论文标题

使用基于设计的方法的聚类RCT进行协变量选择和平均治疗效果估计的套索ols混合方法

A Lasso-OLS Hybrid Approach to Covariate Selection and Average Treatment Effect Estimation for Clustered RCTs Using Design-Based Methods

论文作者

Schochet, Peter Z.

论文摘要

由于设计效果的差异和添加研究集群的高成本(例如医院,学校或社区),统计能力通常是集群RCT的关注点。虽然协变量预定量是提高功率估算回归调整的平均治疗效应(ATE)的首选方法,但一旦收集了主要结果,就可以通过协变量选择获得进一步的精确提高。本文使用基于设计的群集RCT的基于设计的方法来开发用于事后选择的协变量和ATE估计的Lasso-Ols混合程序,以避免模型过于拟合和缺乏透明度。在第一阶段,使用集群级平均值进行了套索估计,在这种平均值中,使用新的中央限制定理证明了有限种群回归估计量的新中心限制。在第二阶段,使用与第一阶段套索协变量的加权最小二乘正方形估算了ATE和基于设计的标准误差。这种非参数方法适用于连续,二元和离散的结果。仿真结果表明,第二阶段估计的1型误差接近名义值,标准误差几乎是真实的,尽管有些较小的样本保守。使用来自大型,联邦资助的RCT的数据来证明该方法,该数据测试促进行为健康的学校计划的效果。

Statistical power is often a concern for clustered RCTs due to variance inflation from design effects and the high cost of adding study clusters (such as hospitals, schools, or communities). While covariate pre-specification is the preferred approach for improving power to estimate regression-adjusted average treatment effects (ATEs), further precision gains can be achieved through covariate selection once primary outcomes have been collected. This article uses design-based methods underlying clustered RCTs to develop a Lasso-OLS hybrid procedure for the post-hoc selection of covariates and ATE estimation that avoids model overfitting and lack of transparency. In the first stage, lasso estimation is conducted using cluster-level averages, where asymptotic normality is proved using a new central limit theorem for finite population regression estimators. In the second stage, ATEs and design-based standard errors are estimated using weighted least squares with the first stage lasso covariates. This nonparametric approach applies to continuous, binary, and discrete outcomes. Simulation results indicate that Type 1 errors of the second stage ATE estimates are near nominal values and standard errors are near true ones, although somewhat conservative with small samples. The method is demonstrated using data from a large, federally funded clustered RCT testing the effects of school-based programs promoting behavioral health.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源