论文标题

混合模式振荡在各种可激发神经元的随机网络中的出现:邻居和电耦合的作用

Emergence of mixed mode oscillations in random networks of diverse excitable neurons: the role of neighbors and electrical coupling

论文作者

Ghosh, Subrata, Mondal, Argha, Ji, Peng, Mishra, Arindam, Dana, Syamal Kumar, Antonopoulos, Chris G., Hens, Chittaranjan

论文摘要

在本文中,我们着重于具有不同兴奋性特性的混合神经元中产生的多种神经元振荡的出现。这些特性产生混合模式振荡(MMO),其特征在于大幅度和替代亚阈值或小振幅振荡的组合。考虑到生物物理上合理的Izhikevich神经元模型,我们证明了各种MMO,包括MMBO(混合模式爆发振荡)和同步的强直尖峰出现在随机连接的神经元网络中,其中一小部分在静态(无声)状态(静音)状态和自我机制状态(触发)状态。我们表明,MMO和其他神经活动的模式取决于静态节点的振荡邻居的数量以及电耦合强度。通过构建降级网络模型,通过系统分叉图以及小型世界网络支持我们的结果。我们的结果表明,对于弱耦合,由于网络中大量静态神经元的去同步,MMO出现了。静止的神经元与发射神经元一起产生高频振荡和爆发活性。总体目标是揭示一个有利的网络体系结构和合适的参数空间,其中Izhikevich模型神经元产生从MMOS到Tonic Spiking等多样的响应。

In this paper, we focus on the emergence of diverse neuronal oscillations arising in a mixed population of neurons with different excitability properties. These properties produce mixed mode oscillations (MMOs) characterized by the combination of large amplitudes and alternate subthreshold or small amplitude oscillations. Considering the biophysically plausible, Izhikevich neuron model, we demonstrate that various MMOs, including MMBOs (mixed mode bursting oscillations) and synchronized tonic spiking appear in a randomly connected network of neurons, where a fraction of them is in a quiescent (silent) state and the rest in self-oscillatory (firing) states. We show that MMOs and other patterns of neural activity depend on the number of oscillatory neighbors of quiescent nodes and on electrical coupling strengths. Our results are verified by constructing a reduced-order network model and supported by systematic bifurcation diagrams as well as for a small-world network. Our results suggest that, for weak couplings, MMOs appear due to the de-synchronization of a large number of quiescent neurons in the networks. The quiescent neurons together with the firing neurons produce high frequency oscillations and bursting activity. The overarching goal is to uncover a favorable network architecture and suitable parameter spaces where Izhikevich model neurons generate diverse responses ranging from MMOs to tonic spiking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源