论文标题

$ n(k)$ - 与$ \ ast $ - 符合条件的ricci soliton联系公制

$N(k)$-contact metric as $\ast$-conformal Ricci soliton

论文作者

Dey, Dibakar, Majhi, Pradip

论文摘要

本文的目的是表征一类接触度量歧管,承认$ \ ast $ - 符合条件的Ricci Soliton。 It is shown that if a $(2n + 1)$-dimensional $N(k)$-contact metric manifold $M$ admits $\ast$-conformal Ricci soliton or $\ast$-conformal gradient Ricci soliton, then the manifold M is $\ast$-Ricci at and locally isometric to the Riemannian of a flat $(n + 1)$-dimensional consant曲率4的歧管和$ n $二维流形,$ n> 1 $,flat flat for $ n = 1 $。此外,对于第一种情况,Soliton Vector Field是共形的,对于$ \ ast $ - 差异案例,潜在函数$ f $是谐波或满足泊松方程。最后,提出了一个示例以支持结果。

The aim of this paper is characterize a class of contact metric manifolds admitting $\ast$-conformal Ricci soliton. It is shown that if a $(2n + 1)$-dimensional $N(k)$-contact metric manifold $M$ admits $\ast$-conformal Ricci soliton or $\ast$-conformal gradient Ricci soliton, then the manifold M is $\ast$-Ricci at and locally isometric to the Riemannian of a flat $(n + 1)$-dimensional manifold and an $n$-dimensional manifold of constant curvature 4 for $n > 1$ and flat for $n = 1$. Further, for the first case, the soliton vector field is conformal and for the $\ast$-gradient case, the potential function $f$ is either harmonic or satisfy a Poisson equation. Finally, an example is presented to support the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源