论文标题

袖子:使用UWB的多视图学习姿势姿势过渡识别

SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB

论文作者

Piriyajitakonkij, Maytus, Warin, Patchanon, Lakhan, Payongkit, Leelaarporn, Pitsharponrn, Pianpanit, Theerasarn, Kumchaiseemak, Nakorn, Suwajanakorn, Supasorn, Niparnan, Nattee, Mukhopadhyay, Subhas Chandra, Wilaiprasitporn, Theerawit

论文摘要

识别睡眠过程中的运动对于监测睡眠障碍患者至关重要,并且尚未广泛探索对人类睡眠姿势分类的超宽带(UWB)雷达的利用。这项研究调查了现成的单个天线UWB在新型的睡眠姿势过渡(SPT)识别的应用中的性能。提出的标题为“ SleePposenet”或SPN的多视图学习旨在对四个标准SPT进行分类。 SPN具有捕获时间和频率特征的能力,包括睡眠位置的运动和方向。从38名志愿者中记录的数据显示,SPN的平均准确性为$ 73.7 \ pm 0.8 \%$明显优于从深度卷积神经网络(DCNN)获得的$ 59.9 \ pm 0.7 \%$的平均准确性,而在最近对使用UWB的人类活动认可的最新状态工作中则是。除UWB系统外,最终可以采用具有数据扩展的SPN来学习和分类各种应用程序中的时间序列数据。

Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of $73.7 \pm 0.8 \%$ significantly outperformed the mean accuracy of $59.9 \pm 0.7 \%$ obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源