论文标题
一种快速且记忆效率的算法,用于平滑的多核苷转换:应用到人类关节跟踪
A fast and memory-efficient algorithm for smooth interpolation of polyrigid transformations: application to human joint tracking
论文作者
论文摘要
LOOG EUCLIDEAN POLYRIGID登记框架提供了一种方法,可以平稳估计和插值多边形/仿射转换,以保证可逆性。当前,这个功能强大且灵活的数学框架目前被用于跟踪人类关节动力学,首先施加骨骼刚性限制,以便稍后综合时空的关节变形。但是,由于不存在封闭形式,因此需要使用此框架进行图像注册来进行普通微分方程(ODE)的计算昂贵集成。为了解决这个问题,使用文献中的缩放和平方方法计算用于解决这些ODE的指数图。在本文中,我们提出了一种使用基于基质对角线化方法的算法,以平滑运动过程中人类关节均匀的多晶转化的插值。这种替代计算方法整合ODE的使用是由于骨骼刚性变换满足人类关节运动的机械约束,这提供了保证局部骨转化的对角线以及随之而来的关节转化的条件。在与缩放和平方方法的比较中,我们讨论了矩阵特征异构技术的有用性,该技术在密集的常规网格上大大减少了与矩阵指数计算相关的计算负担。最后,我们应用了该方法来增强踝关节动态MRI序列的时间分辨率。总而言之,数值实验表明,特征分类方法更有能力平衡精度,计算时间和内存需求之间的权衡。
The log Euclidean polyrigid registration framework provides a way to smoothly estimate and interpolate poly-rigid/affine transformations for which the invertibility is guaranteed. This powerful and flexible mathematical framework is currently being used to track the human joint dynamics by first imposing bone rigidity constraints in order to synthetize the spatio-temporal joint deformations later. However, since no closed-form exists, then a computationally expensive integration of ordinary differential equations (ODEs) is required to perform image registration using this framework. To tackle this problem, the exponential map for solving these ODEs is computed using the scaling and squaring method in the literature. In this paper, we propose an algorithm using a matrix diagonalization based method for smooth interpolation of homogeneous polyrigid transformations of human joints during motion. The use of this alternative computational approach to integrate ODEs is well motivated by the fact that bone rigid transformations satisfy the mechanical constraints of human joint motion, which provide conditions that guarantee the diagonalizability of local bone transformations and consequently of the resulting joint transformations. In a comparison with the scaling and squaring method, we discuss the usefulness of the matrix eigendecomposition technique which reduces significantly the computational burden associated with the computation of matrix exponential over a dense regular grid. Finally, we have applied the method to enhance the temporal resolution of dynamic MRI sequences of the ankle joint. To conclude, numerical experiments show that the eigendecomposition method is more capable of balancing the trade-off between accuracy, computation time, and memory requirements.