论文标题

富有归因的网络中的顶点提名

Vertex Nomination in Richly Attributed Networks

论文作者

Levin, Keith, Priebe, Carey E., Lyzinski, Vince

论文摘要

顶点提名是一个轻度监督的网络信息检索任务,其中一种图中感兴趣的顶点用于查询第二个图,以发现第二个图中感兴趣的顶点。与其他信息检索任务相似,顶点提名方案的输出是第二个图中顶点的排名列表,迄今为止,感兴趣的未知顶点理想地集中在列表的顶部。顶点提名方案提供了一套有用的工具,用于有效地挖掘复杂网络,以获取相关信息。在本文中,我们在理论上和实践上都探讨了内容(即边缘和顶点属性)和上下文(即网络拓扑)在顶点提名中的双重作用。我们提供了必要和充分的条件,在这些条件下,顶点提名计划利用内容和上下文的表现优于仅利用内容或上下文的方案。尽管内容和上下文的共同实用性在文献中已在经验上得到了证明,但本文提出的框架为理解网络特征和拓扑的潜在互补作用提供了一种新颖的理论基础。

Vertex nomination is a lightly-supervised network information retrieval task in which vertices of interest in one graph are used to query a second graph to discover vertices of interest in the second graph. Similar to other information retrieval tasks, the output of a vertex nomination scheme is a ranked list of the vertices in the second graph, with the heretofore unknown vertices of interest ideally concentrating at the top of the list. Vertex nomination schemes provide a useful suite of tools for efficiently mining complex networks for pertinent information. In this paper, we explore, both theoretically and practically, the dual roles of content (i.e., edge and vertex attributes) and context (i.e., network topology) in vertex nomination. We provide necessary and sufficient conditions under which vertex nomination schemes that leverage both content and context outperform schemes that leverage only content or context separately. While the joint utility of both content and context has been demonstrated empirically in the literature, the framework presented in this paper provides a novel theoretical basis for understanding the potential complementary roles of network features and topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源