论文标题
具有恒定时间操作的多机的空间效率动态词典
A Space-Efficient Dynamic Dictionary for Multisets with Constant Time Operations
论文作者
论文摘要
我们考虑了多组的动态词典问题。在任何时间点,鉴于多键(即包括多重性)的总基数的上限$ n $,目标是设计一个支持多重查询的数据结构,并允许插入和删除多空心(即动态设置)。数据结构必须具有空间效率(空间为$ 1+O(1)$乘以信息理论下限),并以较高的概率在恒定时间内支持所有操作。 在本文中,我们介绍了实现这些性能保证的多媒体的第一个动态词典。这回答了Arbiran,Naor和Segev的公开问题(FOCS 2010)。 PAGH,PAGH和RAO(SODA 2005)的先前最著名的结构支持恒定时间的会员资格,最坏情况下的$ O(\ log n)$时间中的多样性查询,以及恒定预期的amortatized amortized时间的插入和删除。我们解决方案的主要技术组成部分是一种使用加权球的实验进行有效存储可变的长度二进制计数器的策略,其中球具有对数权重。 我们还获得了使用Carter等人的降低,该计数过滤器,该滤波器以单面误差近似于多重性查询。 (Stoc 1978)。多年来,由于其在实践中的适用性,计数过滤器已受到了极大的关注。我们介绍了第一个具有持续时间操作的计数过滤器。
We consider the dynamic dictionary problem for multisets. Given an upper bound $n$ on the total cardinality of the multiset (i.e., including multiplicities) at any point in time, the goal is to design a data structure that supports multiplicity queries and allows insertions and deletions to the multiset (i.e., the dynamic setting). The data structure must be space-efficient (the space is $1+o(1)$ times the information-theoretic lower bound) and support all operations in constant time with high probability. In this paper, we present the first dynamic dictionary for multisets that achieves these performance guarantees. This answers an open problem of Arbitman, Naor and Segev (FOCS 2010). The previously best-known construction of Pagh, Pagh and Rao (SODA 2005) supports membership in constant time, multiplicity queries in $O(\log n)$ time in the worst case, and insertions and deletions in constant expected amortized time. The main technical component of our solution is a strategy for efficiently storing variable-length binary counters using weighted balls-into-bins experiments in which balls have logarithmic weights. We also obtain a counting filter that approximates multiplicity queries with a one sided error, using the reduction of Carter et al. (STOC 1978). Counting filters have received significant attention over the years due to their applicability in practice.We present the first counting filter with constant time operations.