论文标题
IPN手:实时连续手势识别的视频数据集和基准
IPN Hand: A Video Dataset and Benchmark for Real-Time Continuous Hand Gesture Recognition
论文作者
论文摘要
在本文中,我们介绍了一个名为IPN Hand的新基准数据集,该数据集具有足够的尺寸,多样性和能够训练和评估深层神经网络的现实元素。该数据集包含来自50个不同受试者的4,000多个手势样本和800,000个RGB帧。我们设计了13种不同的静态和动态手势,这些手势着重于与无触摸屏的相互作用。我们尤其考虑在没有过渡状态的情况下进行连续手势的情况,而当受试者用手作为非手势动作进行自然运动时。手势是从大约30个不同场景中收集的,背景和照明的现实差异。使用我们的数据集,评估了三种3D-CNN模型的性能,以隔离和连续的实时HGR的任务进行评估。此外,我们通过添加来自RGB帧的多种方式,即光流和语义分割来分析提高识别精度的可能性,同时保持3D-CNN模型的实时性能。我们的实证研究还提供了与公开可用的Nvgesture(NVIDIA)数据集进行比较。实验结果表明,最新的Resnext-101模型在使用我们的现实世界数据集时降低了约30%的精度,这表明IPN手数据集可以用作基准测试,并可以帮助社区在连续的HGR中向前迈进。我们在评估中使用的数据集和预培训模型可在https://github.com/gibranbenitez/ipn hand上公开获得。
In this paper, we introduce a new benchmark dataset named IPN Hand with sufficient size, variety, and real-world elements able to train and evaluate deep neural networks. This dataset contains more than 4,000 gesture samples and 800,000 RGB frames from 50 distinct subjects. We design 13 different static and dynamic gestures focused on interaction with touchless screens. We especially consider the scenario when continuous gestures are performed without transition states, and when subjects perform natural movements with their hands as non-gesture actions. Gestures were collected from about 30 diverse scenes, with real-world variation in background and illumination. With our dataset, the performance of three 3D-CNN models is evaluated on the tasks of isolated and continuous real-time HGR. Furthermore, we analyze the possibility of increasing the recognition accuracy by adding multiple modalities derived from RGB frames, i.e., optical flow and semantic segmentation, while keeping the real-time performance of the 3D-CNN model. Our empirical study also provides a comparison with the publicly available nvGesture (NVIDIA) dataset. The experimental results show that the state-of-the-art ResNext-101 model decreases about 30% accuracy when using our real-world dataset, demonstrating that the IPN Hand dataset can be used as a benchmark, and may help the community to step forward in the continuous HGR. Our dataset and pre-trained models used in the evaluation are publicly available at https://github.com/GibranBenitez/IPN-hand.