论文标题

通过神经网络探测量子自旋链中的关键性

Probing Criticality in Quantum Spin Chains with Neural Networks

论文作者

Berezutskii, A, Beketov, M, Yudin, D, Zimborás, Z, Biamonte, J

论文摘要

量子系统的数值仿真通常需要指数级的自由度,这转化为计算瓶颈。机器学习方法已在相邻的字段中用于有效提取和降低高维数据集的维度。最近的研究表明,神经网络进一步适合确定物质和相关相变的宏观阶段以及有效的量子态表示。在这项工作中,我们解决了量子旋转链中的量子相变,即横向场和各向异性XY链,并表明即使没有隐藏层的神经网络也可以有效地训练以区分磁有序和无序相。我们的神经网络可以预测相应的有限尺寸系统发生。我们的结果扩展到了广泛的相互作用的量子多体系统,并说明了神经网络对多体量子物理的广泛适用性。

The numerical emulation of quantum systems often requires an exponential number of degrees of freedom which translates to a computational bottleneck. Methods of machine learning have been used in adjacent fields for effective feature extraction and dimensionality reduction of high-dimensional datasets. Recent studies have revealed that neural networks are further suitable for the determination of macroscopic phases of matter and associated phase transitions as well as efficient quantum state representation. In this work, we address quantum phase transitions in quantum spin chains, namely the transverse field Ising chain and the anisotropic XY chain, and show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases. Our neural network acts to predict the corresponding crossovers finite-size systems undergo. Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源