论文标题
主要手性模型没有WZ术语:对称性和泊松lie t二维
Principal Chiral Model without and with WZ term: Symmetries and Poisson-Lie T-Duality
论文作者
论文摘要
$ su(2)$的双重性能是从一名参数家族开始研究其同等学历的汉密尔顿描述的一家,该家族是由非阿布莱尔对cotangent Space $ t^*su(2)\ simeq Su(2)\ ltimes \ ltimes \ ltimes \ ltimes \ Mathbb {r}^3 $ r}^3 $ simeq su(2)\ simeq su(2)\ simeq su(2)\ simeq su(2)^3 $。相应的双重模型是通过$ o(3,3)$双重性转换获得的,并在$ sb(2,2,\ mathbb {c})$上定义的结果,这是$ su(2)$的托林dlinfel'd Dould $ sl(2,2,\ sutb boun poisson-lie dial dial of $ su(2)$ SB(2,\ Mathbb {C})$。这些双重模型提供了Poisson-lie t二维的明确实现。然后,在切线空间$ tsl(2,\ mathbb {c})$上构建了加倍的普遍操作。此外,不久将讨论对具有WZ期限的$ SU(2)$ PCM的概括。
Duality properties of the $SU(2)$ Principal Chiral Model are investigated starting from a one-parameter family of its equivalent Hamiltonian descriptions generated by a non-Abelian deformation of the cotangent space $T^*SU(2) \simeq SU(2) \ltimes \mathbb{R}^3$. The corresponding dual models are obtained through $O(3,3)$ duality transformations and result to be defined on the group $SB(2,\mathbb{C})$, which is the Poisson-Lie dual of $SU(2)$ in the Iwasawa decomposition of the Drinfel'd double $SL(2,\mathbb{C})=SU(2) \bowtie SB(2,\mathbb{C})$.These dual models provide an explicit realization of Poisson-Lie T-duality. A doubled generalized parent action is then built on the tangent space $TSL(2,\mathbb{C})$. Furthermore, a generalization of the $SU(2)$ PCM with a WZ term is shortly discussed.