论文标题
quasiarithmetety型不变式概率空间
Quasiarithmetic-type invariant means on probability space
论文作者
论文摘要
对于一个家庭$(\ Mathscr {a} _x)_ {x \ in(0,1)} $的整体quasiarithmetic的表示表示某些可测量性型式假设,我们搜索一个积分的均值$ k $ (0,1)} \ big)= k(\ mathbb {p})$对于每个紧凑型概率的borel测量$ \ mathbb {p} $。同样,将给出有关不变手段独特性的一些结果。
For a family $(\mathscr{A}_x)_{x \in (0,1)}$ of integral quasiarithmetic means sattisfying certain measurability-type assumptions we search for an integral mean $K$ such that $K\big((\mathscr{A}_x(\mathbb{P}))_{x \in (0,1)}\big)=K(\mathbb{P})$ for every compactly supported probabilistic Borel measure $\mathbb{P}$. Also some results concerning the uniqueness of invariant means will be given.