论文标题

探索无监督样式转移的上下文单词级风格相关性

Exploring Contextual Word-level Style Relevance for Unsupervised Style Transfer

论文作者

Zhou, Chulun, Chen, Liangyu, Liu, Jiachen, Xiao, Xinyan, Su, Jinsong, Guo, Sheng, Wu, Hua

论文摘要

无监督的样式转移旨在改变输入句子的样式,同时在不使用并行培训数据的情况下保留其原始内容。在目前的主要方法中,由于缺乏对目标样式影响的细粒度控制,因此他们无法产生理想的输出句子。在本文中,我们提出了一个新颖的注意序列到序列(SEQ2SEQ)模型,该模型动态利用每个输出单词与目标样式的相关性,以实现无监督的样式传输。具体来说,我们首先为样式分类器预算,在该样式分类器中,每个输入词与原始样式的相关性可以通过层次相关性传播来量化。以一种自动编码的方式,我们训练一个注意力seq2seq模型,以同时重建输入句子并拒绝了单词级别的样式相关性。通过这种方式,该模型具有自动预测每个输出单词的样式相关性的能力。然后,我们为该模型的解码器配备了神经样式组件,以利用预测的WordLevel风格相关性,以获得更好的样式转移。特别是,我们使用涉及样式转移,样式相关性一致性,内容保存和流利性建模损失项的精心设计的目标函数微调该模型。实验结果表明,我们提出的模型就传递精度和内容保存都实现了最先进的性能。

Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style,they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源