论文标题
将$ \ mathbb {q} $嵌入一个有限呈现的组中
Embedding $\mathbb{Q}$ into a Finitely Presented Group
论文作者
论文摘要
我们观察到,汤普森(Thompson)组$ t $ to to Real Line的所有元素的所有升力组有限地呈现,并包含合理数字的加法组$ \ MATHBB {Q} $。这可以明确意识到希格曼嵌入定理的$ \ mathbb {q} $,回答了马丁·布里森(Martin Bridson)和皮埃尔·德拉·哈佩(Pierre de la Harpe)的库洛夫卡笔记本问题。
We observe that the group of all lifts of elements of Thompson's group $T$ to the real line is finitely presented and contains the additive group $\mathbb{Q}$ of the rational numbers. This gives an explicit realization of the Higman embedding theorem for $\mathbb{Q}$, answering a Kourovka notebook question of Martin Bridson and Pierre de la Harpe.