论文标题

用跨点电阻内存阵列的一步回归和分类

One-step regression and classification with crosspoint resistive memory arrays

论文作者

Sun, Zhong, Pedretti, Giacomo, Bricalli, Alessandro, Ielmini, Daniele

论文摘要

近年来,机器学习一直引起人们的关注,作为处理日常生活中无处不在的传感器产生的大数据的一种工具。高速,低能计算机需要在云中启用边缘的实时人工智能,即不支持远程帧服务器。这种要求挑战了互补的金属 - 氧化物 - 气管导体(CMOS)技术,该技术受摩尔定律的限制,在传统计算体系结构中接近其结束和通信瓶颈。因此,强烈需要新颖的计算概念,架构和设备来加速数据密集型应用。在这里,我们显示了带有反馈配置的跨点电阻内存电路,可以通过计算存储器中数据的假矩阵,可以在一个步骤中执行线性回归和逻辑回归。因此,最基本的学习操作是一系列数据序列的回归和一组数据的分类,因此可以通过新技术在一个计算步骤中执行。模拟了波士顿房屋成本的预测以及对MNIST数字识别的2层神经网络的培训进一步支持一步学习。由于交叉点阵列中的物理,平行和模拟计算,结果全部在一个计算步骤中获得。

Machine learning has been getting a large attention in the recent years, as a tool to process big data generated by ubiquitous sensors in our daily life. High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge, i.e., without the support of a remote frame server in the cloud. Such requirements challenge the complementary metal-oxide-semiconductor (CMOS) technology, which is limited by the Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures and devices are thus strongly needed to accelerate data-intensive applications. Here we show a crosspoint resistive memory circuit with feedback configuration can execute linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. The most elementary learning operation, that is the regression of a sequence of data and the classification of a set of data, can thus be executed in one single computational step by the novel technology. One-step learning is further supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition. The results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源