论文标题
通过通用近似器,可见的实验效率高达99%的宽带矢量超级灯泡
Broadband vectorial ultra-flat optics with experimental efficiency up to 99% in the visible via universal approximators
论文作者
论文摘要
将常规光学元件集成到紧凑的纳米结构表面是平面光学元件的目标。尽管这项技术取得了巨大进展,但由于可见的效率有限,平均低于$ 60 \%$,但对于现实世界中的应用仍存在着重要挑战,这是由于波长厚度($ \ \ \ \ \ \ \ \ \ \ \ \ 500 $ nm)结构的吸收损失源于吸收损失。另一个问题是实现按需光学成分,用于在反射和传输中同时以可见的频率以及预定的波前形状来控制矢量光。在这项工作中,我们开发了一种反设计方法,该方法允许实现高效(最高$ 99 \%$)的Ultra-Flat(降至$ 50 $ nm厚的$ 50 $ nm厚),用于矢量光控制和宽带输入输出响应,以在所需的波前形状上。该方法利用了通用近似器的隐藏网络,该网络存在于适当设计的半导体纳米结构的物理层中。几乎统一的性能来自这些表面的超流量性质,从而将吸收损失降低到几乎可以忽略的值。在实验上,我们讨论了极化光束拆分器,将它们的性能与从直接和逆设计技术获得的最佳结果进行了比较,以及由二分性镜子代表的新的平面式组件和平面光学镜的基本单元,这些单元仅通过使用两个子像素来创建完整的颜色,从而超越了传统的LCD/OLED lcd/OLED CONSITION,这些颜色都需要三个子颜色。我们的设备是由互补的金属氧化物 - 氧化物 - 副导体(CMOS)兼容的过程制造的,使其可用于廉价成本的大规模生产。
Integrating conventional optics into compact nanostructured surfaces is the goal of flat optics. Despite the enormous progress of this technology, there are still critical challenges for real world applications due to a limited efficiency in the visible, on average lower than $60\%$, which originates by absorption losses in wavelength thick ($\approx 500$nm) structures. Another issue is the realization of on-demand optical components for controlling vectorial light at visible frequencies simultaneously in both reflection and transmission, and with a predetermined wavefront shape. In this work, we developed an inverse design approach that allows the realization of highly efficient (up to $99\%$) ultra-flat (down to $50$nm thick) optics for vectorial light control and broadband input-output responses on a desired wavefront shape. The approach leverages on a hidden network of universal approximators, which exist in the physical layer of suitably engineered semiconductor nanostructures. Near unity performance results from the ultra-flat nature of these surfaces, which reduces absorption losses to almost negligible values. Experimentally, we discuss polarizing beam splitters, comparing their performances with the best results obtained from both direct and inverse design techniques, and new flat-optics components represented by dichroic mirrors and the basic unit of a flat optics display that creates full colors by using only two sub-pixels, overcoming the limitations of conventional LCD/OLED technologies that require three sub-pixels for each composite color. Our devices are manufactured with a complementary metal-oxide-semiconductor (CMOS) compatible process, making them scalable for mass production at inexpensive costs.