论文标题

边缘加权的在线双方匹配

Edge-Weighted Online Bipartite Matching

论文作者

Fahrbach, Matthew, Huang, Zhiyi, Tao, Runzhou, Zadimoghaddam, Morteza

论文摘要

在线二手匹配及其变体是在线算法文献中最根本的问题之一。 Karp,Vazirani和Vazirani(Stoc 1990)引入了一种未加权问题的优雅算法,其最佳竞争比率为$ 1-1/e $。后来,Aggarwal等人。 (SODA 2011)将其算法和分析概括为顶点加权病例。但是,除了琐碎的$ 1/2 $竞争性贪婪算法外,最通用的边缘加权问题知之甚少。在本文中,我们介绍了第一种在线算法,它破坏了长期以来的$ 1/2 $障碍,并达到了至少0.5086美元的竞争比率。鉴于Kapralov,Post和Vondrák(Soda 2013)的硬度限制了限制$ 1/2 $的竞争比率,这是单调性福利最大化的更一般性问题,我们的结果可以看作是有力的证据,这些证据与超级福利相比,具有严格的边缘匹配非常容易,而不是次生福利的最大化。 我们在线匹配算法中的主要成分是一种新颖的子例程,称为在线相关选择(OCS),它将一对顶点作为输入,并从每对中选择一个顶点。 OC没有使用新鲜的随机位从每对中选择一个顶点,而是对跨不同对的决策负相关,并提供了相关水平的定量度量。我们认为我们的OCS技术具有独立的兴趣,并将在其他在线优化问题中找到进一步的应用。

Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal competitive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源