论文标题
非自主奇异双旋转问题的综合效果
Combined effects for non-autonomous singular biharmonic problems
论文作者
论文摘要
我们研究了具有单数非线性和Navier边界条件的一类普通$ P(X)$ Biharmonic方程的非平凡弱解决方案的存在。这些证明结合了变分和拓扑论点。本文开发的方法允许治疗几类奇异的双旋转问题,这些问题在应用科学中会产生可变的生长,包括毛细血管方程和平均曲率问题。
We study the existence of nontrivial weak solutions for a class of generalized $p(x)$-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem.