论文标题
Weyl Semimetals和石墨烯的边界模式的精确晶格模型计算
Exact lattice-model calculation of boundary modes for Weyl semimetals and graphene
论文作者
论文摘要
我们提供了一种精确的分析技术,以在晶格模型中获得锯齿形和胡须边缘石墨烯中边缘状态的波函数,以及在最小体积模型中描述的Weyl半学中的Fermi-Arc表面状态。我们将相应的边界建模为无限标量电势位于线上,分别在平面内。我们使用t-matrix形式主义来获得相应边界模式的分散和空间分布。此外,为了证明我们的方法的力量,我们写下了所考虑的Weyl半学模型的表面绿色功能,并计算出源自位于各自表面的杂质的准粒子干扰模式。
We provide an exact analytical technique to obtain within a lattice model the wave functions of the edge states in zigzag- and bearded-edge graphene, as well as of the Fermi-arc surface states in Weyl semimetals described by a minimal bulk model. We model the corresponding boundaries as an infinite scalar potential localized on a line, and respectively within a plane. We use the T-matrix formalism to obtain the dispersion and the spatial distribution of the corresponding boundary modes. Furthermore, to demonstrate the power of our approach, we write down the surface Green's function of the considered Weyl semimetal model, and we calculate the quasiparticle interference patterns originating from an impurity localized at the respective surface.