论文标题
学习通勤预测的地理上下文嵌入
Learning Geo-Contextual Embeddings for Commuting Flow Prediction
论文作者
论文摘要
预测基于基础设施和土地利用信息的通勤流对于城市规划和公共政策发展至关重要。但是,鉴于通勤流的复杂模式,这是一项具有挑战性的任务。传统模型(例如重力模型)主要源自物理原理,并受其预测能力的限制,在现实世界中需要考虑许多因素。同时,大多数现有的基于机器学习的方法忽略了空间相关性,并且无法对附近地区的影响进行建模。为了解决这些问题,我们提出了地理包含多任务嵌入学习者(GMEL),该模型捕获了从地理上下文信息中的空间相关性,用于通勤流程预测。具体而言,我们首先构建一个包含地理上下文信息的地理贴上网络。然后,基于图形注意网络(GAT)的框架提出了注意机制,以捕获空间相关性并编码地理上下文信息以嵌入空间。两个单独的gat用于建模供求特征。多任务学习框架用于引入更强的限制并提高嵌入表示的有效性。最后,根据学到的嵌入来预测通勤流的梯度提升机进行训练。我们使用纽约市的现实世界数据集评估了我们的模型,实验结果证明了我们针对最新技术的提议的有效性。
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development. However, it is a challenging task given the complex patterns of commuting flows. Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios where many factors need to be considered. Meanwhile, most existing machine learning-based methods ignore the spatial correlations and fail to model the influence of nearby regions. To address these issues, we propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction. Specifically, we first construct a geo-adjacency network containing the geographic contextual information. Then, an attention mechanism is proposed based on the framework of graph attention network (GAT) to capture the spatial correlations and encode geographic contextual information to embedding space. Two separate GATs are used to model supply and demand characteristics. A multitask learning framework is used to introduce stronger restrictions and enhance the effectiveness of the embedding representation. Finally, a gradient boosting machine is trained based on the learned embeddings to predict commuting flows. We evaluate our model using real-world datasets from New York City and the experimental results demonstrate the effectiveness of our proposal against the state of the art.