论文标题

Engmeta-计算工程元数据

EngMeta -- Metadata for Computational Engineering

论文作者

Schembera, Björn, Iglezakis, Dorothea

论文摘要

计算工程通过分析和解释研究数据产生知识,这是由计算机模拟产生的。超级计算机生成大量的研究数据。为了解决研究问题,大量模拟在大型参数空间上进行。因此,处理这些数据并保持概述成为一个挑战。数据文档主要由僵化的文件系统中的文件和文件夹名称处理,这使得数据几乎无法找到,可访问,互动并因此可重复使用。为了启用和改善计算工程研究数据的结构化文档,我们开发了Engmeta作为元数据模型。我们通过将现有标准纳入一般描述性和技术信息,并添加元数据字段,以构建该模型,并为学科特定信息添加元数据字段,例如模拟目标系统的组件和参数以及有关研究过程(例如使用的方法,软件和计算环境)的信息。在实际使用中,Engmeta功能是机构存储库的描述性核心。为了减少科学家的描述负担,我们开发了一种方法,可以自动从计算机模拟的输出和日志文件中提取元数据信息。通过定性分析,我们表明Engmeta符合良好的元数据模型的标准。通过定量调查,我们可以证明它满足了工程科学家的需求。

Computational engineering generates knowledge through the analysis and interpretation of research data, which is produced by computer simulation. Supercomputers produce huge amounts of research data. To address a research question, a lot of simulations are run over a large parameter space. Therefore, handling this data and keeping an overview becomes a challenge. Data documentation is mostly handled by file and folder names in inflexible file systems, making it almost impossible for data to be findable, accessible, interopable and hence reusable. To enable and improve a structured documentation of research data from computational engineering, we developed EngMeta as a metadata model. We built this model by incorporating existing standards for general descriptive and technical information and adding metadata fields for disciplinespecific information like the components and parameters of the simulated target system and information about the research process like the used methods, software and computational environment. EngMeta functions, in practical use, as the descriptive core for an institutional repository. In order to reduce the burden of description on scientists, we have developed an approach for automatically extracting metadata information from the output and log files of computer simulations. Through a qualitative analysis, we show that EngMeta fulfills the criteria of a good metadata model. Through a quantitative survey, we can show that it meets the needs of engineering scientists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源