论文标题

随机动力学系统中缓慢变量的表征较弱

A weak characterization of slow variables in stochastic dynamical systems

论文作者

Bittracher, Andreas, Schütte, Christof

论文摘要

我们为连续的马尔可夫过程提供了缓慢变量的新颖表征,该过程可证明可以保留慢速的时间尺度。这些慢速变量被称为分子动力应用中的反应坐标,在该应用中,它们在系统分析和粗网中起关键作用。这些慢变量的定义特征在于,它们参数为所谓的过渡歧管,这是一定密度函数空间中的低维歧管,并随着系统快速变量的进行性平衡而出现。以前,某些类型的亚稳态和缓慢的系统预测了所述歧管的存在。但是,在原始工作中,歧管的存在取决于系统的过渡密度函数的点融合。我们在这项工作中表明,相对于系统的固定措施的平均收敛足以产生具有相同关键品质的反应坐标。这使人们可以准确预测旧理论不适用或会产生过度悲观结果的系统中的时间尺度保存。此外,新的表征仍然是建设性的,因为它允许对良好的慢变量进行算法识别。小型亚稳态系统证明了改进的表征,误差预测和变量构造。

We present a novel characterization of slow variables for continuous Markov processes that provably preserve the slow timescales. These slow variables are known as reaction coordinates in molecular dynamical applications, where they play a key role in system analysis and coarse graining. The defining characteristics of these slow variables is that they parametrize a so-called transition manifold, a low-dimensional manifold in a certain density function space that emerges with progressive equilibration of the system's fast variables. The existence of said manifold was previously predicted for certain classes of metastable and slow-fast systems. However, in the original work, the existence of the manifold hinges on the pointwise convergence of the system's transition density functions towards it. We show in this work that a convergence in average with respect to the system's stationary measure is sufficient to yield reaction coordinates with the same key qualities. This allows one to accurately predict the timescale preservation in systems where the old theory is not applicable or would give overly pessimistic results. Moreover, the new characterization is still constructive, in that it allows for the algorithmic identification of a good slow variable. The improved characterization, the error prediction and the variable construction are demonstrated by a small metastable system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源