论文标题

使用移动性参数的基于机器学习的框架,用于新兴网络中的KPI最大化

A Machine Learning based Framework for KPI Maximization in Emerging Networks using Mobility Parameters

论文作者

Shodamola, Joel, Masood, Usama, Manalastas, Marvin, Imran, Ali

论文摘要

当前的LTE网络面临着大量的配置和优化参数(COPS)(硬和软),它们经过手动调整以管理网络并提供更好的体验质量(QOE)。考虑到5G,这些警察的数量预计将达到每个站点的2000,并为找到这些参数的最佳组合而进行了手动调整,这是一个不可能的车队。与这些成千上万的警察旁边是新兴网络中预期的网络致密化,这加剧了网络运营商在管理和优化网络方面的负担。因此,我们提出了一个基于机器学习的框架与启发式技术相结合,以发现在移动性,细胞个体偏移量(CIO)和移交边距(HOM)中使用的两个相关COP的最佳组合,从而最大化了特定的关键性能指标(KPI),例如平均信号对干扰和噪声比率(SINR)的所有连接使用者。框架的第一部分利用了机器学习的力量来预测CIO和HOM的几种不同组合。然后将所得的预测送入遗传算法(GA)中,该算法搜索了两个提到的参数的最佳组合,这些参数为所有用户带来了最大平均值SINR。还使用多种机器学习技术评估了该框架的性能,而Catboost算法得出了最佳的预测性能。同时,GA能够更有效地揭示最佳参数设置组合,并且与Brute Force方法相比,三个数量级的收敛时间更快。

Current LTE network is faced with a plethora of Configuration and Optimization Parameters (COPs), both hard and soft, that are adjusted manually to manage the network and provide better Quality of Experience (QoE). With 5G in view, the number of these COPs are expected to reach 2000 per site, making their manual tuning for finding the optimal combination of these parameters, an impossible fleet. Alongside these thousands of COPs is the anticipated network densification in emerging networks which exacerbates the burden of the network operators in managing and optimizing the network. Hence, we propose a machine learning-based framework combined with a heuristic technique to discover the optimal combination of two pertinent COPs used in mobility, Cell Individual Offset (CIO) and Handover Margin (HOM), that maximizes a specific Key Performance Indicator (KPI) such as mean Signal to Interference and Noise Ratio (SINR) of all the connected users. The first part of the framework leverages the power of machine learning to predict the KPI of interest given several different combinations of CIO and HOM. The resulting predictions are then fed into Genetic Algorithm (GA) which searches for the best combination of the two mentioned parameters that yield the maximum mean SINR for all users. Performance of the framework is also evaluated using several machine learning techniques, with CatBoost algorithm yielding the best prediction performance. Meanwhile, GA is able to reveal the optimal parameter setting combination more efficiently and with three orders of magnitude faster convergence time in comparison to brute force approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源