论文标题
使用DARPA频谱协作挑战(SC2)数据集进行框架错误预测的深度学习
Deep Learning for Frame Error Prediction using a DARPA Spectrum Collaboration Challenge (SC2) Dataset
论文作者
论文摘要
我们展示了在参与DARPA SC2挑战的最终混战期间收集的数据集中,在预测协作智能无线网络(CIRN)中使用深度学习的第一个示例。考虑了四种情况,是基于随机化或确定带宽和通道分配的策略的四种情况,并且使用不同的链接进行训练和测试,或者使用每个链接使用试验阶段来训练深层神经网络。我们还研究了延迟约束的影响,并发现了预测因子对不同信号与噪声比(SNR)范围的有趣特征。获得的见解为实施基于深度学习的策略打开了大门,该策略可扩展到大型异质网络,可推广到各种无线环境,适合预测拥挤的共享频谱中的框架误差实例和速率。
We demonstrate a first example for employing deep learning in predicting frame errors for a Collaborative Intelligent Radio Network (CIRN) using a dataset collected during participation in the final scrimmages of the DARPA SC2 challenge. Four scenarios are considered based on randomizing or fixing the strategy for bandwidth and channel allocation, and either training and testing with different links or using a pilot phase for each link to train the deep neural network. We also investigate the effect of latency constraints, and uncover interesting characteristics of the predictor over different Signal to Noise Ratio (SNR) ranges. The obtained insights open the door for implementing a deep-learning-based strategy that is scalable to large heterogeneous networks, generalizable to diverse wireless environments, and suitable for predicting frame error instances and rates within a congested shared spectrum.