论文标题
通过利用时空相关性来启用具有成本效益的人口健康监测:一项实证研究
Enabling Cost-Effective Population Health Monitoring By Exploiting Spatiotemporal Correlation: An Empirical Study
论文作者
论文摘要
由于其在健康政策制定中的重要作用,人口健康监测(PHM)被认为是公共卫生服务的基本障碍。但是,传统的公共卫生数据收集方法,例如基于诊所的数据集成或健康调查,可能非常昂贵且耗时。为了应对这一挑战,本文提出了一种具有成本效益的方法,称为压缩人群健康(CPH),其中选择给定区域的子集以传统方式收集数据收集区域的区域,同时利用邻近地区的固有空间相关性来对该区域其余部分进行数据推理。通过纵向交替交替,该方法可以验证和纠正先前评估的空间相关性。为了验证CPH的想法是否可行,我们根据伦敦附近500多个地区的慢性疾病的时空发病率进行了深入的研究。我们介绍了CPH方法,并介绍了三项广泛的分析研究。第一个证实确实存在显着的时空相关性。在第二项研究中,通过部署多个最先进的数据恢复算法,我们可以验证这些时空相关性可以利用仅使用少量样品来准确地进行数据推理。最后,我们比较了传统数据收集区域选择的不同方法,并展示了这种方法如何在保持高PHM质量的同时进一步降低总成本。
Because of its important role in health policy-shaping, population health monitoring (PHM) is considered a fundamental block for public health services. However, traditional public health data collection approaches, such as clinic-visit-based data integration or health surveys, could be very costly and time-consuming. To address this challenge, this paper proposes a cost-effective approach called Compressive Population Health (CPH), where a subset of a given area is selected in terms of regions within the area for data collection in the traditional way, while leveraging inherent spatial correlations of neighboring regions to perform data inference for the rest of the area. By alternating selected regions longitudinally, this approach can validate and correct previously assessed spatial correlations. To verify whether the idea of CPH is feasible, we conduct an in-depth study based on spatiotemporal morbidity rates of chronic diseases in more than 500 regions around London for over ten years. We introduce our CPH approach and present three extensive analytical studies. The first confirms that significant spatiotemporal correlations do exist. In the second study, by deploying multiple state-of-the-art data recovery algorithms, we verify that these spatiotemporal correlations can be leveraged to do data inference accurately using only a small number of samples. Finally, we compare different methods for region selection for traditional data collection and show how such methods can further reduce the overall cost while maintaining high PHM quality.