论文标题

模型驱动的深神经网络,用于降雨

A Model-driven Deep Neural Network for Single Image Rain Removal

论文作者

Wang, Hong, Xie, Qi, Zhao, Qian, Meng, Deyu

论文摘要

深度学习(DL)方法已在删除单像降雨的任务中实现了最先进的表现。然而,当前的大多数DL架构仍然缺乏足够的解释性,并且没有与一般雨条中的物理结构完全集成。在这个问题上,在本文中,我们通过完全可解释的网络结构提出了一个模型驱动的深层神经网络。具体而言,基于代表雨的卷积词典学习机制,我们提出了一种新型的单图像模型,并利用近端梯度下降技术来设计迭代算法,仅包含用于求解模型的简单操作员。这样一个简单的实施方案有助于我们将其展开到一个新的深网架构中,称为Rain Convolutional Dictionary Network(RCDNET),几乎每个网络模块都与算法中涉及的每个操作相对应。通过端到端培训,拟议的RCDNET可以自动提取所有雨核和近端操作员,忠实地表征了雨水和干净的背景层的特征,因此自然会导致其更好的降低性能,尤其是在实际情况下。与在视觉和定量上的最新技术相比,全面的实验证实了所提出的网络的优势,尤其是其对各种测试方案的一般性和所有模块的良好解释性。源代码可在\ url {https://github.com/hongwang01/rcdnet}中获得。

Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures inside general rain streaks. To this issue, in this paper, we propose a model-driven deep neural network for the task, with fully interpretable network structures. Specifically, based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. Such a simple implementation scheme facilitates us to unfold it into a new deep network architecture, called rain convolutional dictionary network (RCDNet), with almost every network module one-to-one corresponding to each operation involved in the algorithm. By end-to-end training the proposed RCDNet, all the rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to its better deraining performance, especially in real scenarios. Comprehensive experiments substantiate the superiority of the proposed network, especially its well generality to diverse testing scenarios and good interpretability for all its modules, as compared with state-of-the-arts both visually and quantitatively. The source codes are available at \url{https://github.com/hongwang01/RCDNet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源