论文标题

标量调整理论中的重力记忆效应和邦迪 - 米茨纳 - 齐对称性

Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories

论文作者

Hou, Shaoqi, Zhu, Zong-Hong

论文摘要

在标量探望理论中研究了引力记忆效应与渐近平面空间的邦迪 - 米茨纳 - 齐射对称性之间的关系。为此,在具有合适决定性条件的广义键合坐标中获得了未来无效无穷大的运动方程的解决方案。事实证明,Bondi-Metzner-Sachs组也是无限尺寸尺寸超级翻译组和Lorentz组的半导产物。标量调整理论中的张量和标量扇区中也有简并真空。超级翻译将张量领域的真空吸尘器联系起来,而在标量扇区中,洛伦兹的转化使真空彼此转化。因此,有张量的内存效应与一般相对性中的记忆效应类似,而标量内存效应是新的。债券质量和角动量方面的进化方程表明,跨零无穷大的无效磁通和角动量通量分别诱导张量和标量扇区的真空之间的过渡。

The relation between gravitational memory effects and Bondi-Metzner-Sachs symmetry of the asymptotically flat spacetimes is studied in the scalar-tensor theory. For this purpose, the solutions to the equations of motion near the future null infinity are obtained in the generalized Bondi-Sachs coordinates with a suitable determinant condition. It turns out that the Bondi-Metzner-Sachs group is also a semi-direct product of an infinitesimal dimensional supertranslation group and the Lorentz group as in general relativity. There are also degenerate vacua in both the tensor and the scalar sectors in the scalar-tensor theory. The supertranslation relates the vacua in the tensor sector, while in the scalar sector, it is the Lorentz transformation that transforms the vacua to each other. So there are the tensor memory effect similar to the one in general relativity, and the scalar memory effect, which is new. The evolution equations for the Bondi mass and angular momentum aspects suggest that the null energy fluxes and the angular momentum fluxes across the null infinity induce the transition among the vacua in the tensor and the scalar sectors, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源