论文标题

一阶代数普通微分方程的合理解决方案

Rational Solutions of First Order Algebraic Ordinary Differential Equations

论文作者

Feng, Ruyong, Feng, Shuang

论文摘要

令$ f(t,y,y')= \ sum_ {i = 0}^d a_i(t,y)y'^i = 0 $是带有多项式系数的第一阶普通微分方程。 1999年的Eremenko证明,存在一个恒定的$ c $,因此每个合理解决方案$ f(t,y,y')= 0 $的程度不大于$ c $。示例表明,此度限制的$ c $不仅取决于$ t,y,y'$中的$ f $的学位,而且还取决于$ f $的系数,在$ t,y,y'$中被视为多项式。在本文中,我们表明,如果$$ \ max_ {i = 0}^d \ {{{\ rm deg}(a_i,y)-2(d-i)-2(d-i)\}> 0 $$,那么bound的$ c $仅取决于$ f $的$ f $,并且此外,我们还显示了$ c $ c $ c $ c $ n $ n $ f $ n $ f $ f $ f $ f $ f $ f。

Let $f(t, y,y')=\sum_{i=0}^d a_i(t, y)y'^i=0$ be a first order ordinary differential equation with polynomial coefficients. Eremenko in 1999 proved that there exists a constant $C$ such that every rational solution of $f(t, y,y')=0$ is of degree not greater than $C$. Examples show that this degree bound $C$ depends not only on the degrees of $f$ in $t,y,y'$ but also on the coefficients of $f$ viewed as polynomial in $t,y,y'$. In this paper, we show that if $$\max_{i=0}^d \{{\rm deg}(a_i,y)-2(d-i)\}>0 $$ then the degree bound $C$ only depends on the degrees of $f$, and furthermore we present an explicit expression for $C$ in terms of the degrees of $f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源