论文标题

更多一点:通过比特平板的位深度恢复

A Little Bit More: Bitplane-Wise Bit-Depth Recovery

论文作者

Punnappurath, Abhijith, Brown, Michael S.

论文摘要

成像传感器在10--12位的动态范围内数字化传入的场景光(即1024---4096音调值)。然后,将传感器图像在相机上处理,最终仅量化为8位(即256个音调值),以符合盛行的编码标准。有许多重要的应用程序,例如高位深度显示器和照片编辑,在其中恢复失去的位深度是有益的。深度神经网络在这项多重重建任务中有效。鉴于量化的低位深度图像作为输入,现有的深度学习方法采用了一种尝试(1)直接估计高位深度图像的单次射击方法,或(2)直接估计高位和低位深度图像之间的残差。相比之下,我们提出了一种训练和推理策略,以逐步恢复剩余的图像bitplane-bitplane。我们的BITPLANE学习框架具有允许在培训期间进行多个监督的优势,并能够使用简单的网络体系结构获得最新的结果。我们在几个图像数据集上广泛测试了我们的方法,并证明了根据量化级别的定量级别,对先前方法的改进从0.5dB到2.3dB。

Imaging sensors digitize incoming scene light at a dynamic range of 10--12 bits (i.e., 1024--4096 tonal values). The sensor image is then processed onboard the camera and finally quantized to only 8 bits (i.e., 256 tonal values) to conform to prevailing encoding standards. There are a number of important applications, such as high-bit-depth displays and photo editing, where it is beneficial to recover the lost bit depth. Deep neural networks are effective at this bit-depth reconstruction task. Given the quantized low-bit-depth image as input, existing deep learning methods employ a single-shot approach that attempts to either (1) directly estimate the high-bit-depth image, or (2) directly estimate the residual between the high- and low-bit-depth images. In contrast, we propose a training and inference strategy that recovers the residual image bitplane-by-bitplane. Our bitplane-wise learning framework has the advantage of allowing for multiple levels of supervision during training and is able to obtain state-of-the-art results using a simple network architecture. We test our proposed method extensively on several image datasets and demonstrate an improvement from 0.5dB to 2.3dB PSNR over prior methods depending on the quantization level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源