论文标题

宇宙论问题中的信息几何形状

Information geometry in cosmological inference problems

论文作者

Giesel, Eileen, Reischke, Robert, Schäfer, Björn Malte, Chia, Dominic

论文摘要

统计推断通常涉及导致非高斯后代的参数中非线性的模型。存在许多可以处理非高斯分布的计算和分析工具,经验高斯化变换可以减少分布中非高斯性的量。另外,在这项工作中,我们采用信息几何形状的方法。后者为某些给定模型制定了一组概率分布,作为一种歧管,采用了带有指标的Riemannian结构(Fisher信息)。在此框架中,我们在更高范围的Fisher近似中研究了非高斯的差异几何含义,以及它们在重新参数下的各自的转化行为,这对应于统计歧管上的图表过渡。虽然弱的非高斯在正常坐标中消失了,但通常不会发现全球丢弃非高斯的转变。作为一个应用程序,我们考虑了参数对宇宙学中超新星距离红移关系的可能性($ω_ {\ mathrm {m_0}} $,$ w $)。我们证明了置信区间和地球长度之间的联系,并演示了沿堕落方向的谎言衍生物如何为Fisher度量标准的可能等法提供暗示。

Statistical inference more often than not involves models which are non-linear in the parameters thus leading to non-Gaussian posteriors. Many computational and analytical tools exist that can deal with non-Gaussian distributions, and empirical Gaussianisation transforms can reduce the amount of non-Gaussianity in a distribution. Alternatively, in this work, we employ methods from information geometry. The latter formulates a set of probability distributions for some given model as a manifold employing a Riemannian structure, equipped with a metric, the Fisher information. In this framework we study the differential geometrical meaning of non-Gaussianities in a higher order Fisher approximation, and their respective transformation behaviour under re-parameterisation, which corresponds to a chart transition on the statistical manifold. While weak non-Gaussianities vanish in normal coordinates in a first order approximation, one can in general not find transformations that discard non-Gaussianities globally. As an application we consider the likelihood of the supernovae distance-redshift relation in cosmology for the parameter pair ($Ω_{\mathrm{m_0}}$, $w$). We demonstrate the connection between confidence intervals and geodesic length and demonstrate how the Lie-derivative along the degeneracy directions gives hints at possible isometries of the Fisher metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源