论文标题

逻辑知识追踪:学习者建模的受限框架

Logistic Knowledge Tracing: A Constrained Framework for Learner Modeling

论文作者

Pavlik, Jr., Philip I., Eglington, Luke G., Harrell-Williams, Leigh M.

论文摘要

自适应学习技术解决方案通常使用学习者模型来追踪学习并做出教学决策。本研究介绍了一种用于指定学习者模型的形式化方法,即逻辑知识追踪(LKT),该方法巩固了许多现存的学习者建模方法。 LKT的强度是针对替代逻辑回归模型的符号符号系统的规范,该模型足够强大,可以在文献和许多新模型中指定许多现有模型。为了证明LKT的通用性,我们适合12个模型,一些知名模型和一些新设计的变体,适用于6个学习技术数据集。结果表明,在所有情况下,没有任何一个学习者模型是最好的,进一步证明了一种广泛的方法来考虑多个学习者模型特征和学习环境。此处介绍的模型避免了学生级的固定参数,以提高普遍性。我们还介绍了这些截距的功能。我们认为,要最大程度地适用,学习者模型需要适应学生的差异,而不是需要以每个学生的能力水平进行预参数。

Adaptive learning technology solutions often use a learner model to trace learning and make pedagogical decisions. The present research introduces a formalized methodology for specifying learner models, Logistic Knowledge Tracing (LKT), that consolidates many extant learner modeling methods. The strength of LKT is the specification of a symbolic notation system for alternative logistic regression models that is powerful enough to specify many extant models in the literature and many new models. To demonstrate the generality of LKT, we fit 12 models, some variants of well-known models and some newly devised, to 6 learning technology datasets. The results indicated that no single learner model was best in all cases, further justifying a broad approach that considers multiple learner model features and the learning context. The models presented here avoid student-level fixed parameters to increase generalizability. We also introduce features to stand in for these intercepts. We argue that to be maximally applicable, a learner model needs to adapt to student differences, rather than needing to be pre-parameterized with the level of each student's ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源