论文标题

语言模型作为单词顺序假设的替代评估者:日语的案例研究

Language Models as an Alternative Evaluator of Word Order Hypotheses: A Case Study in Japanese

论文作者

Kuribayashi, Tatsuki, Ito, Takumi, Suzuki, Jun, Inui, Kentaro

论文摘要

我们使用神经语言模型(LMS)来研究一种方法来分析语言顺序。这种基于LM的方法有可能克服现有方法所面临的困难,例如基于计数的方法中预处理器错误的传播。在这项研究中,我们探讨了基于LM的方法是否有效分析订单一词。作为一个案例研究,由于日语复杂而灵活的单词顺序,这项研究重点关注日本。为了验证基于LM的方法,我们测试了(i)LMS和人词顺序偏好之间的相似之处,以及(ii)使用基于LM的方法和以前的语言研究获得的结果的一致性。通过我们的实验,我们初步得出结论,LMS显示出足够的单词顺序知识作为分析工具。最后,使用基于LM的方法,我们证明了规范单词顺序和局部化之间的关系,这尚未通过大规模实验来分析。

We examine a methodology using neural language models (LMs) for analyzing the word order of language. This LM-based method has the potential to overcome the difficulties existing methods face, such as the propagation of preprocessor errors in count-based methods. In this study, we explore whether the LM-based method is valid for analyzing the word order. As a case study, this study focuses on Japanese due to its complex and flexible word order. To validate the LM-based method, we test (i) parallels between LMs and human word order preference, and (ii) consistency of the results obtained using the LM-based method with previous linguistic studies. Through our experiments, we tentatively conclude that LMs display sufficient word order knowledge for usage as an analysis tool. Finally, using the LM-based method, we demonstrate the relationship between the canonical word order and topicalization, which had yet to be analyzed by large-scale experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源