论文标题
forecastqa:与时间文本数据有关事件预测的问题回答挑战
ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal Text Data
论文作者
论文摘要
事件预测是一项具有挑战性但重要的任务,因为人类试图不断为未来计划。现有的自动预测研究主要依赖于结构化数据,例如时间序或基于事件的知识图,以帮助预测未来的事件。在这项工作中,我们旨在制定一个任务,构建数据集并为开发大量非结构化文本数据的事件预测的方法提供基准。为了模拟有关时间新闻文档的预测方案,我们将问题作为限制性域,多项选择,提问(QA)任务进行了提出。与现有的QA任务不同,我们的任务限制了可访问的信息,因此模型必须做出预测判断。为了展示此任务配方的有用性,我们介绍了ForeCastQA,这是一个由10,392个事件预测问题组成的提问数据集,这些问题已通过众包工作收集和验证。我们使用基于BERT的模型介绍了有关ForecastQA的实验,发现我们的最佳模型在数据集上达到了60.1%的精度,该模型仍然落后于人类绩效约19%。我们希望FerecastQA将支持未来的研究工作,以弥合这一差距。
Event forecasting is a challenging, yet important task, as humans seek to constantly plan for the future. Existing automated forecasting studies rely mostly on structured data, such as time-series or event-based knowledge graphs, to help predict future events. In this work, we aim to formulate a task, construct a dataset, and provide benchmarks for developing methods for event forecasting with large volumes of unstructured text data. To simulate the forecasting scenario on temporal news documents, we formulate the problem as a restricted-domain, multiple-choice, question-answering (QA) task. Unlike existing QA tasks, our task limits accessible information, and thus a model has to make a forecasting judgement. To showcase the usefulness of this task formulation, we introduce ForecastQA, a question-answering dataset consisting of 10,392 event forecasting questions, which have been collected and verified via crowdsourcing efforts. We present our experiments on ForecastQA using BERT-based models and find that our best model achieves 60.1% accuracy on the dataset, which still lags behind human performance by about 19%. We hope ForecastQA will support future research efforts in bridging this gap.