论文标题

大规模的不确定性估计及其在中小企业的收入预测中的应用

Large-scale Uncertainty Estimation and Its Application in Revenue Forecast of SMEs

论文作者

Zhang, Zebang, Zhao, Kui, Huang, Kai, Jia, Quanhui, Fang, Yanming, Yu, Quan

论文摘要

中小型企业(SME)部门的经济和银行业重要性在当代社会中得到了广泛认可。业务信用贷款对于中小企业的运作非常重要,收入是信用限额管理的关键指标。因此,构建可靠的收入预测模型非常有益。如果可以估计企业收入预测的不确定性,则可以批准更适当的信用额度。自然梯度增强方法,该方法估计了基于自然梯度的多参数增强算法的预测不确定性。但是,与最先进的基于树的型号(例如XGBoost)相比,其原始实现不容易扩展到大数据方案,并且计算昂贵。在本文中,我们提出了一种可扩展的自然梯度增强机器,该机器易于实现,易于平行,可解释并产生高质量的预测性不确定性估计值。根据收入分布的特征,我们得出了不确定性定量函数。我们证明我们的方法可以区分准确和不准确的中小企业收入预测的样本。更重要的是,可以自然地从模型中获得可解释性,从而满足财务需求。

The economic and banking importance of the small and medium enterprise (SME) sector is well recognized in contemporary society. Business credit loans are very important for the operation of SMEs, and the revenue is a key indicator of credit limit management. Therefore, it is very beneficial to construct a reliable revenue forecasting model. If the uncertainty of an enterprise's revenue forecasting can be estimated, a more proper credit limit can be granted. Natural gradient boosting approach, which estimates the uncertainty of prediction by a multi-parameter boosting algorithm based on the natural gradient. However, its original implementation is not easy to scale into big data scenarios, and computationally expensive compared to state-of-the-art tree-based models (such as XGBoost). In this paper, we propose a Scalable Natural Gradient Boosting Machines that is simple to implement, readily parallelizable, interpretable and yields high-quality predictive uncertainty estimates. According to the characteristics of revenue distribution, we derive an uncertainty quantification function. We demonstrate that our method can distinguish between samples that are accurate and inaccurate on revenue forecasting of SMEs. What's more, interpretability can be naturally obtained from the model, satisfying the financial needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源