论文标题
线性参数变化系统标识的主动学习
Active Learning for Linear Parameter-Varying System Identification
论文作者
论文摘要
提出了主动学习,以选择实验设计中的下一个操作点,以识别线性参数变化系统。我们将文献中的现有方法扩展到具有多元调度参数的多输入多输出系统。我们的方法基于利用高斯过程回归的概率特征,以量化跨当地鉴定模型的整体模型不确定性。这导致了一个灵活的框架,该框架适合各种技术,以估算局部线性模型及其相应的不确定性。我们在应用柴油发动机空气路径模型的应用中执行积极学习,并证明可以使用所提出的框架成功降低模型不确定性的度量。
Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.