论文标题

基于汽车雷达的50厘米城市定位

Automotive-Radar-Based 50-cm Urban Positioning

论文作者

Narula, Lakshay, Iannucci, Peter A., Humphreys, Todd E.

论文摘要

超出阳光和干燥的气体范围之外的自动地面车辆(AGV)的部署将需要基于无线电波而不是近乎可见光的轻射辐射的次车道级定位技术。像人类的视线一样,在低可见性条件下,LiDAR和相机的表现也很差。本文开发并展示了一种基于商业上可用的低成本汽车雷达的可靠50厘米精确的城市地面定位的新技术。该技术在计算上是有效的,但获得了全球最佳的翻译和标题解决方案,避免了在城市雷达环境中重复模式引起的局部最小值。在广泛而现实的城市数据集上评估绩效。与地面真相的比较表明,当与稳定的短期探空仪结合使用时,该技术将95%的误差保持在水平位置50 cm以下,标题为1度。

Deployment of automated ground vehicles (AGVs) beyond the confines of sunny and dry climes will require sub-lane-level positioning techniques based on radio waves rather than near-visible-light radiation. Like human sight, lidar and cameras perform poorly in low-visibility conditions. This paper develops and demonstrates a novel technique for robust 50-cm-accurate urban ground positioning based on commercially-available low-cost automotive radars. The technique is computationally efficient yet obtains a globally-optimal translation and heading solution, avoiding local minima caused by repeating patterns in the urban radar environment. Performance is evaluated on an extensive and realistic urban data set. Comparison against ground truth shows that, when coupled with stable short-term odometry, the technique maintains 95-percentile errors below 50 cm in horizontal position and 1 degree in heading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源