论文标题
复杂的社会传染诱导多重网络上的双重性
Complex social contagion induces bistability on multiplex networks
论文作者
论文摘要
社会增强机制在社会传染过程中暴露于多个来源时的促进效应的特征是信息技术生态系统无处不在,并且近年来引起了极大的关注。虽然有充分的文献记录了社会加强对单层网络的影响,但需要扩展到多层网络,以研究来自不同社交圈子的强化如何影响扩散动态。为此,我们将多层社会强化纳入多重网络上的无知者 - 尊贵者(SIS)模型。我们的理论分析结合了成对方法和平均场理论,并且与大规模模拟非常吻合。出人意料的是,我们发现这种复杂的社会传染机制触发了双重现象的出现,在灭绝和爆发状态并存。特别是,固定流行率的滞后循环发生在这个亲密的地区,解释了为什么在现代社会中旷日持久且艰难的谣言斗争。此外,我们表明,双态区域的最终状态取决于采用者的初始密度,其临界值随着传染性的传播性或多层增强的增加而降低。特别是,我们强调了社会传染爆发的两个可能条件:具有巨大的传染性传播性,或者拥有具有强大的多层增强剂的庞大的采用者初始密度。我们的结果揭示了多路复用网络上社会增强的不可忽略的力量,该网络在设计有效的策略方面阐明了诸如营销和促进创新之类的有效策略。
Social reinforcement mechanism, which characterizes the promoting effects when exposing to multiple sources in social contagion process, is ubiquitous in information-technology ecosystem and has aroused great attention in recent years. While the impacts of social reinforcement on single-layer networks are well-documented, extension to multilayer networks is needed to study how reinforcement from different social circles influences the spreading dynamics. To this end, we incorporate multilayer social reinforcement into ignorant-spreader-ignorant (SIS) model on multiplex networks. Our theoretical analysis combines pairwise method and mean-field theory and agrees well with large-scale simulations. Surprisingly, we find this complex social contagion mechanism triggers the emergence of bistability phenomena, where extinction and outbreak states coexist. In particular, the hysteresis loop of stationary prevalence occurs in this bistable region, explaining why the fight towards the spread of rumors is protracted and difficult in modern society. Further, we show that the final state of bistable regions depends on the initial density of adopters, the critical value of which decreases as the contagion transmissibility or the multilayer reinforcement increases. In particular, we highlight two possible conditions for the outbreak of social contagion: to possess large contagion transmissibility, or to possess large initial density of adopters with strong multilayer reinforcement. Our results unveil the non-negligible power of social reinforcement on multiplex networks, which sheds lights on designing efficient strategies in spreading behaviors such as marketing and promoting innovations.