论文标题

同时进行非高斯组件分析(SIN),用于神经影像学中的数据集成

Simultaneous Non-Gaussian Component Analysis (SING) for Data Integration in Neuroimaging

论文作者

Risk, Benjamin, Gaynanova, Irina

论文摘要

随着技术的进步允许获取互补信息,科学研究收集多个数据集是越来越普遍的。大规模的神经影像学研究通常包括多种方式(例如,任务功能MRI,静止状态fMRI,扩散MRI和/或结构MRI),目的是了解数据集之间的关系。在这项研究中,我们试图了解在工作记忆任务中激活大脑的区域是否与静止状态相关性有关。在神经影像学中,一种流行的方法使用主成分分析在使用联合独立组件分析的规范相关分析之前缩小维度,但这可能会丢弃具有较低方差和/或具有关节结构数据的数据集的生物学特征。我们同时介绍了同时实现缩小维度和特征提取的非高斯组件分析(SIN),并通过主题分数捕获共享信息。我们将方法应用于人类Connectome项目的工作记忆任务和静止状态相关性。我们发现关节结构可以从关节分数中可以明显地介绍与工作记忆相关的区域的静止状态相关性。此外,某些主题分数与流体智能有关。

As advances in technology allow the acquisition of complementary information, it is increasingly common for scientific studies to collect multiple datasets. Large-scale neuroimaging studies often include multiple modalities (e.g., task functional MRI, resting-state fMRI, diffusion MRI, and/or structural MRI), with the aim to understand the relationships between datasets. In this study, we seek to understand whether regions of the brain activated in a working memory task relate to resting-state correlations. In neuroimaging, a popular approach uses principal component analysis for dimension reduction prior to canonical correlation analysis with joint independent component analysis, but this may discard biological features with low variance and/or spuriously associate structure unique to a dataset with joint structure. We introduce Simultaneous Non-Gaussian component analysis (SING) in which dimension reduction and feature extraction are achieved simultaneously, and shared information is captured via subject scores. We apply our method to a working memory task and resting-state correlations from the Human Connectome Project. We find joint structure as evident from joint scores whose loadings highlight resting-state correlations involving regions associated with working memory. Moreover, some of the subject scores are related to fluid intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源