论文标题
相关的随机扩张过程中意外的跨界
Unexpected crossovers in correlated random-diffusivity processes
论文作者
论文摘要
在拥挤的液体和活生物细胞内的微米大小示踪剂颗粒的被动和主动运动的普遍特征是“粘弹性”的异常扩散,其中运动的增量具有长期的负相关和正相关。虽然粘弹性异常扩散通常是通过相关增量的高斯过程建模的,即所谓的分数高斯噪声,但据报道越来越多的系统,其中粘弹性异常扩散与非高斯流离失所分布配对。在布朗尼但非高斯扩散的最新进展之后,我们在这里介绍并讨论了具有长期相关性的随机扩散模型的几种可能版本。尽管所有这些模型都表现出从非高斯到高斯分布的交叉,但它们的平均平方位移表现出截然不同的行为:根据从异常到正常扩散到正常扩散的模型交叉,以及对有效扩散的意外依赖性对有效扩散系数的依赖性。我们对随机扩散性粘弹性异常扩散的强烈非宇宙性的观察对于分析实验和更好地理解“粘弹性但非高斯”扩散的物理起源。
The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by "viscoelastic" anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the strong non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of "viscoelastic yet non-Gaussian" diffusion.