论文标题
在规模不变的3-3-1模型中的动力对称性断裂和费米昂质量层次结构
Dynamical Symmetry Breaking and Fermion Mass Hierarchy in the Scale-Invariant 3-3-1 Model
论文作者
论文摘要
我们基于$ su(3)_c \ otimes su(3)_l \ otimes u(1)_x $(3-3-1)规格对称性和比例不变性,提出了标准模型(SM)的扩展。该模型维持所谓的3-3-1模型的主要特征,例如与手性费米昂世代数量相关的量规异常,该模型表现出非常紧凑的标量扇区。只有两个标量三重态和一个单重脚是通过Coleman-Weinberg机制动态打破对称性的必要和足够的。通过引入Abelian离散对称性,并假设中性标量场的真空期望值之间具有自然的层次结构,我们表明该模型中的所有粒子都可以在现象学上保持一致的质量。特别是,大多数标准费米质量都是通过seesaw机制生成的,涉及一些额外的沉重费米子,以保持一致性。该机制为SM中的费米昂质量层次结构问题提供了部分解决方案。此外,标量扇区的简单性使我们能够在分析上找到潜在稳定性至一环水平的条件,并显示如何轻松满足它们。预计某些新粒子,例如标量$ h $,$ h^\ pm $和所有非SM矢量玻色子,可以在TEV量表附近获得质量,因此可以在高亮度LHC下产生。最后,我们表明该模型具有残差对称性,从而导致了重中性粒子的稳定性。后者有望在实验中显示为缺失的能量。
We propose an extension of the Standard Model (SM) based on the $SU(3)_C\otimes SU(3)_L\otimes U(1)_X$ (3-3-1) gauge symmetry and scale invariance. Maintaining the main features of the so-called 3-3-1 models, such as the cancellation of gauge anomalies related to the number of chiral fermion generations, this model exhibits a very compact scalar sector. Only two scalar triplets and one singlet are necessary and sufficient to break the symmetries dynamically via the Coleman-Weinberg mechanism. With the introduction of an Abelian discrete symmetry and assuming a natural hierarchy among the vacuum expectation values of the neutral scalar fields, we show that all particles in the model can get phenomenologically consistent masses. In particular, most of the standard fermion masses are generated via a seesaw mechanism involving some extra heavy fermions introduced for consistency. This mechanism provides a partial solution for the fermion mass hierarchy problem in the SM. Furthermore, the simplicity of the scalar sector allows us to analytically find the conditions for the potential stability up to one-loop level and show how they can be easily satisfied. Some of the new particles, such as the scalars $H$, $H^\pm$ and all the non-SM vector bosons, are predicted to get masses around the TeV scale and, therefore, could be produced at the high-luminosity LHC. Finally, we show that the model features a residual symmetry which leads to the stability of a heavy neutral particle; the latter is expected to show up in experiments as missing energy.