论文标题

使用网络搜索日志研究勒索软件攻击

Studying Ransomware Attacks Using Web Search Logs

论文作者

Bansal, Chetan, Deligiannis, Pantazis, Maddila, Chandra, Rao, Nikitha

论文摘要

网络攻击越来越普遍,并对个人,企业甚至国家造成了重大损害。特别是,在过去的十年中,勒索软件攻击已经显着增长。我们通过分析Bing Web搜索引擎中的查询日志,对有关勒索软件攻击的采矿见解进行了第一个研究。我们首先提取勒索软件相关的查询,然后构建一个机器学习模型,以识别用户寻求勒索软件攻击支持的查询。我们表明,用户搜索行为和特征与勒索软件攻击相关。我们还分析了时间和地理空间的趋势,并根据公开信息验证了我们的发现。最后,我们对流行的勒索软件“ Nemty”进行案例研究,以表明可以通过查询日志分析获得有关网络攻击的准确见解。

Cyber attacks are increasingly becoming prevalent and causing significant damage to individuals, businesses and even countries. In particular, ransomware attacks have grown significantly over the last decade. We do the first study on mining insights about ransomware attacks by analyzing query logs from Bing web search engine. We first extract ransomware related queries and then build a machine learning model to identify queries where users are seeking support for ransomware attacks. We show that user search behavior and characteristics are correlated with ransomware attacks. We also analyse trends in the temporal and geographical space and validate our findings against publicly available information. Lastly, we do a case study on 'Nemty', a popular ransomware, to show that it is possible to derive accurate insights about cyber attacks by query log analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源