论文标题

使用残留周期生成对抗网络的MR成像中强度非均匀性校正

Intensity Non-uniformity Correction in MR Imaging Using Residual Cycle Generative Adversarial Network

论文作者

Dai, Xianjin, Lei, Yang, Liu, Yingzi, Wang, Tonghe, Ren, Lei, Curran, Walter J., Patel, Pretesh, Liu, Tian, Yang, Xiaofeng

论文摘要

目的:在给定的组织类型中纠正或减少体素强度不均匀性(INU)的影响是每天临床实践中定量MRI图像分析的关键问题。在这项研究中,我们提出了一种基于MRI图像INU校正的深度学习方法。 方法:我们开发了一个残留周期生成的对抗网络(RES-CYCLE-GAN),该网络将残留块概念集成到周期一致的GAN(Cycle-GAN)中。在Cycle-GAN中,在未校正和校正的MRI图像之间实现了反向转换,以通过强迫INU校正后的MRI和合成校正的MRI计算来限制模型。在Cycle-GAN的发生器中应用了一个完全卷积的神经网络整合残留块,以增强INU校正MRI转换的端到端RAW MRI。由T1加权MR INU图像的30例腹部患者组成的队列及其使用临床建立且常用的方法进行校正,即N4ITK被用作评估所提出的RES-Cycle-cycle-cycy-cy-cy-cy-cy-cy-cy-cy-cy-cy-cy-cy-cy-cy-cy-conu校正校正算法。在提出的方法和其他方法中进行了定量比较。 结果:与其他算法相比,我们的基于RES-Cycle GAN的方法达到了更高的精度和更好的组织均匀性。此外,一旦模型经过良好的训练,我们的方法就可以在几分钟内自动生成校正后的MR图像,从而消除了对参数的手动设置的需求。 结论:在这项研究中,已经研究了一种基于深度学习的自动INU校正方法,即已经研究了res-cycle gan。结果表明,基于学习的方法可以实现有希望的准确性,同时通过避免N4ITK校正中的不直觉参数调谐过程来高度加速校正。

Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach for MRI image INU correction. Method: We developed a residual cycle generative adversarial network (res-cycle GAN), which integrates the residual block concept into a cycle-consistent GAN (cycle-GAN). In cycle-GAN, an inverse transformation was implemented between the INU uncorrected and corrected MRI images to constrain the model through forcing the calculation of both an INU corrected MRI and a synthetic corrected MRI. A fully convolution neural network integrating residual blocks was applied in the generator of cycle-GAN to enhance end-to-end raw MRI to INU corrected MRI transformation. A cohort of 30 abdominal patients with T1-weighted MR INU images and their corrections with a clinically established and commonly used method, namely, N4ITK were used as a pair to evaluate the proposed res-cycle GAN based INU correction algorithm. Quantitatively comparisons were made among the proposed method and other approaches. Result: Our res-cycle GAN based method achieved higher accuracy and better tissue uniformity compared to the other algorithms. Moreover, once the model is well trained, our approach can automatically generate the corrected MR images in a few minutes, eliminating the need for manual setting of parameters. Conclusion: In this study, a deep learning based automatic INU correction method in MRI, namely, res-cycle GAN has been investigated. The results show that learning based methods can achieve promising accuracy, while highly speeding up the correction through avoiding the unintuitive parameter tuning process in N4ITK correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源