论文标题
通过双边约束编码的行为恢复
Recovery of Behaviors Encoded via Bilateral Constraints
论文作者
论文摘要
如果机器人曾经实现与动物表现出的自动运动相当的自主运动,则必须获得在损害,故障或环境条件上迅速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在数十次尝试中恢复高度的自由运动行为。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的约束通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六脚架机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
If robots are ever to achieve autonomous motion comparable to that exhibited by animals, they must acquire the ability to quickly recover motor behaviors when damage, malfunction, or environmental conditions compromise their ability to move effectively. We present an approach which allowed our robots and simulated robots to recover high-degree of freedom motor behaviors within a few dozen attempts. Our approach employs a behavior specification expressing the desired behaviors in terms as rank ordered differential constraints. We show how factoring these constraints through an encoding template produces a recipe for generalizing a previously optimized behavior to new circumstances in a form amenable to rapid learning. We further illustrate that adequate constraints are generically easy to determine in data-driven contexts. As illustration, we demonstrate our recovery approach on a physical 7 DOF hexapod robot, as well as a simulation of a 6 DOF 2D kinematic mechanism. In both cases we recovered a behavior functionally indistinguishable from the previously optimized motion.